Morita Equivalence of Semigroups with Local Units

نویسنده

  • M. V. LAWSON
چکیده

We prove that two semigroups with local units are Morita equivalent if and only if they have a joint enlargement. This approach to Morita theory provides a natural framework for understanding McAlister’s theory of the local structure of regular semigroups. In particular, we prove that a semigroup with local units is Morita equivalent to an inverse semigroup precisely when it is a regular locally inverse semigroup.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Morita equivalence for semigroups with local units

Morita equivalence is a widely used tool for rings with identity. (Two rings are said to be Morita equivalent if the categories of unitary modules over them are equivalent.) For monoids, this notion is not really useful: in most cases it reduces to isomorphism. As the theory of Morita equivalence could be developed for the more general case of rings with local units, and then for idempotent rin...

متن کامل

Morita invariants for partially ordered semigroups with local units

We study Morita invariants for strongly Morita equivalent partially ordered semigroups with several types of local units. These include the greatest commutative images, satisfying a given inequality and the fact that strong Morita equivalence preserves various sublattices of the lattice of ideals.

متن کامل

On Morita equivalence of partially ordered semigroups with local units

We show that for two partially ordered semigroups S and T with common local units, there exists a unitary Morita context with surjective maps if and only if the categories of closed right Sand T posets are equivalent.

متن کامل

Strong Morita Equivalence of Inverse Semigroups

We introduce strong Morita equivalence for inverse semigroups. This notion encompasses Mark Lawson’s concept of enlargement. Strongly Morita equivalent inverse semigroups have Morita equivalent universal groupoids in the sense of Paterson and hence strongly Morita equivalent universal and reduced C∗-algebras. As a consequence we obtain a new proof of a result of Khoshkam and Skandalis showing t...

متن کامل

Morita equivalence based on Morita context for arbitrary semigroups

In this paper, we study the Morita context for arbitrary semigroups. We prove that, for two semigroups S and T, if there exists a Morita context (S, T, P,Q, τ, μ) (not necessary unital) such that the maps τ and μ are surjective, the categories US-FAct and UT -FAct are equivalent. Using this result, we generalize Theorem 2 in [2] to arbitrary semigroups. Finally, we give a characterization of Mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009